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The underlying philosophy
This is a highly modern MATHEMATICAL HANDBOOK 

consisting of two printed parts and two electronic parts that provide
♦ complete and clear information about almost anything needed in a daily work
♦ easy use for professionals and students in Mathematics, Physics, Engineering, etc.
♦ more information at points where it is needed, just a click away
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Structure and Use of the Book
Structure of the book
 This is an Alive Book®. It is the fi rst publication of a new and extended concept 
of a book and has four parts, A and B in printed form, C and D in electronic form:
 Part A is the basic book. It contains the main material related to the cover title.
 Part B is the smaller accompanying book that contains a summary of Part A.
 Part C contains additions, i.e. fi les which can be obtained using the icon numbers.
 Part D contains material in many forms related to the subject in a broader sense.

Use of the book
 Each Alive Book® is the personal copy of the registered owner and can be used 
(in accordance with the terms stated explicitly in the registration form) as follows: 
Part A as a regular book (as any other handbook). Part B as a fast reference to essen-
tial material. Part C as an additional software information to more material, exam-
ples, applications, etc. Part D as a source for the best related material worldwide.

 The icons used in Part A indicate where additional material is available and the 
type of the addition. The colors indicate the level of diffi culty: Green Exa  for el-
ementary level, blue Exa  for medium level, red Exa  for advanced level. The three 
letters inside each icon indicate the content of the addition as follows:
 App  Application: An application of a theory or a method.
 Cal  Calculation: Calculation of an integral or an expression.
 Exa  Example: A specifi c example of a case or a method.
 Ext  Extension: More theory or an extention to related material.
 Inf  Information: General related information.
 Pro  Proof: Proof of a theorem, a statement or a formula.
 Tab  Table: Numerical table(s) of data needed in calculations.
 The  Theory or Theorem: More theory or theorems or rigorous conditions.

 Each icon represents an addition and has a naturely assigned, unique four-digit 
icon number. In part A, the following symbols are also used:
 ������    Different cases or methods explained previously.
 ►  Important points, cases or statements.    ����   Zoom of a drawing or picture.

Examples of sample pages from the book follow.



Trigonometric functions

 For x in radians, the trigonometric functions y = sinx, y = cosx, y = tanx, 
y = cotx have the following graphs:
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 Fig. 3-3    y = sinx Fig. 3-5    y = tanx
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 Fig. 3-4    y = cosx Fig. 3-6    y = cotx

Values of trigonometric functions  Ext

x in 
degrees

x in 
radians sinx cosx tanx cotx

0° 0 0 1 0 ±∞

15° π /12 ( 6  − 2 )/4 ( 6  + 2 )/4 2 − 3 2 + 3

30° π /6 1/2 3/2 3/3 3

45° π /4 2/2 2/2 1 1

60° π /3 3/2 1/2 3 3/3

75° 5π /12 ( 6  + 2 )/4 ( 6  − 2 )/4 2 + 3 2 − 3

90° π /2 1 0 ±∞ 0

For angles in other quadrants, we can use the transformation formulas of Section 3.2.
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4  GEOMETRY
4.1  Plane Geometry     Ext

Triangle  A

B Ca

bc

ha

u

ma

da

D

Fig. 4-1

Side b 2 = a 2 + c 2 ± 2a(BD)
 (+ if θ > 90°, − if θ < 90°)

Perimeter Π = 2s = a + b + c

Height h a s s a s b s ca = − − −2 ( )( )( )

Median ma b c a2 2 2 21
2

1
4= + −( )

Bisector (inner) d bcs s a
b ca = −

+
2 ( )

Bisector (outer) D bc s b s c
b c b ca = − −

− ≠2 ( )( )
| | ,

Area E ah ac s s a s b s ca= = = − − −1
2

1
2 sin ( )( )( )u

Radius of inscribed circle r = − − − = + +( )−1 1 1 1 1

s s s a s b s c h h ha b c
( )( )( )

Radius of circumscribed circle R abc
s s a s b s c

=
− − −4 ( )( )( )

Right triangle For θ = 90°, b 2 = a 2 + c 2   (Pythagorean theorem)
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 Fig. 4-2 Fig. 4-3 Fig. 4-4

Similar triangles (Fig. 4-4)

  A = A'      B = B'      C = C'              AB
A B

BC
B C

CA
C A′ ′ = ′ ′ = ′ ′
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With tanax  � Set u = sinax or u = cosax.
� Set u = tan ax.
� Write integrand as sum.
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�

tan tan2 ax dx ax
a x∫ = −

�

tan tan ln cos3
2

2
1ax dx ax

a a ax∫ = +
�

dx
ax a axtan ln sin∫ = 1

�

dx
ax ax a ax

tan cos
ln tan2

1∫ =
�

x ax dx B a x
k

ax a xk k
k

k k

k
tan

( )
( )!∫ =

−
+ = + +

− +

=

∞

∑ 2 2 1
2 1 3 15

2 2
2

2 1 2 1

1

3 3 5 22
105 2

5 7a x x+ <�, p
 } 

Cal
tan ( )

( )( )!
ax

x dx B a x
k k ax a xk k

k
k k

k∫ =
−

− = +
− −

=

∞

∑ 2 2 1
2 1 2 9

2 2
2

2 1 2 1

1

3 3
++ + <2

75 2
5 5a x x�, p

x axdx x ax
a a

ax xtan tan ln cos2
2

21
2∫ = + −
�

dx
b ax c

ax dx
b ax c ax b c

cx b
a b ax ctan

cos
sin cos ln sin cos+ = + =

+
+ +∫ ∫ 1

2 2 aax⎡
⎣⎢

⎤
⎦⎥

 } 
Cal

tan
tan

sin
sin cos ln sinax dx

b ax c
ax dx

b ax c ax b c
bx c

a b ax+ = + =
+

−∫ ∫ 1
2 2 ++⎡

⎣⎢
⎤
⎦⎥

c axcos

dx
b x c c b x b

c
b
c x b c bc

tan
tan tan , ,2

11 0
+

= − − ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

≠ >∫ −

�

tan
tan ( )

ln(cos sin )x dx
k x k

x k x
1

1
2 12 2 2

2 2 2

+
=

−
+∫

�

tan tan
( ) tan ,n

n
nax dx ax

n a ax dx n∫ ∫= − − ≠
−

−
1

2

1 1
�

Sample Page 108 from Chapter 7: INDEFINITE INTEGRALS



With logarithmic functions  � Use indefinite integral.
� Use complex integral.
� Set x = e−y.
� Set x = exp(−z 2), z > 0.
� Use gamma function.

ln ( )x
x dx1 3 1 240

1 2
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  [γ = Euler constant]
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 11.4  Tables of Fourier series
 In each case below, the following are given: the function f (x) with the interval  I = 
(c, c + 2L), the Fourier series F(x), the discontinuities xd of f (x), and the values F(xd), 
the graphs of f (x) in red and F x a a k x

L b k x
Ln k k

k

n
( ) cos sin= + +( )

=
∑0

12
p p  in green.
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 We defi ne the surface integral of A on S (S' is the projection of S on xOy)

A S A N N k A Ni i
i

id dxdy x y z E
S S n k k k k k k

k

n

∫ ∫∫= = Δ
′ →∞ =

∑lim ( , , )
1

Also, A S A N× = × Δ∫ →∞ =
∑d x y z E

S n k k k k k k
k

n
lim ( , , )

1
 is defi ned in a similar way.

Theorems of Gauss, Stokes and Green  

x

y

z

S

N

dS

O

Fig. 12-6
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z

S

N

dS

C

O

Fig. 12-7

 In a three dimensional Euclidean space, let 
S be a piecewise smooth oriented closed surface 
(Fig. 12-6), which encloses a bounded, simply 
connected region V. Let N be the unit vector 
normal to S toward the outside and dS = NdS. 
Then, according to Gauss’s theorem, for a vector 
fi eld A with continuous partial derivatives, we 
have

∇ =∫ ∫i iA A SdV d
V S

 Let S be a piecewise smooth oriented open 
surface whose boundary is a piecewise smooth 
simple closed curve C (Fig. 12-7), and dS = NdS 
(N the unit vector normal to S). Then according 
to Stokes’s theorem, for a vector fi eld A with 
continuous partial derivatives we have

A r A Si i� d d
C S∫ ∫= ∇ ×( )

where the line integral on the closed curve C 
has been obtained with the appropriate direction 
(someone walking on S, on the side of N and 
close to C, has the inside of S at his left).

 If D is a domain of the xy plane containing a piecewise smooth and simple closed 
curve C and its interior R, then according to Green’s theorem in the plane, we have

  
A Ti� �ds Pdx Qdy Q

x
P
y dxdy

C C R∫ ∫ ∫= +( ) = ∂
∂ − ∂

∂( )
 

Ext

This can be obtained from Stokes’s theorem with A = P(x, y)i + Q(x, y)j and C a 
closed curve in the xy plane.
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Oblate spheroidal coordinates (ξ, η, φ)  

1

j = const.

h
=

co
ns

t.

r

z

Fig. 13-7 ����

 x = acoshξcosηcosφ,  y = acoshξcosηsinφ,
 z = asinhξsinη
with  0 ≤ ξ < ∞,  −π/2 ≤ η ≤ π/2,  0 ≤ φ < 2π

 h1 = hξ = h2 = hη = a sinh sin2 2j h+ ,

 h3 = acoshξ cosη

 Setting w2 = a2(sinh2ξ + sin2η) we have

 
∇ = ∂

∂
∂
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2 2 2 2
1 1 1F

j j j F
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∂

 Two families of coordinate surfaces result from the rotation of Fig. 13-6 around 
its y axis, which then becomes z. The third family of coordinate surfaces consists of 
planes that include this axis. In a plane that includes the new z axis, the coordinate 
curves (Fig. 13-7) are given for various values of ξ and η by the equations
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2
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cos sin
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Prolate spheroidal coordinates (ξ, η, φ)  
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Fig. 13-8 ����

 x = asinhξsinηcosφ,   y = asinhξsinηsinφ,
 z = acoshξcosη

with  0 ≤ ξ < ∞,   0 ≤ η ≤ π,   0 ≤ φ < 2π

 h1 = hξ = h2 = hη = a sinh sin2 2j h+ ,

 h3 = hφ = asinhξ sinη

 Setting w2 = a2(sinh2ξ + sin2η) we have
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 Two families of coordinate surfaces result from the rotation of Fig. 13-6 around 
its x axis, which then becomes z. The third family of coordinate surfaces consists of 
planes that include this axis. In a plane that includes the new z axis, the coordinate 
curves (Fig. 13-8) are given for various values of ξ and η by the equations
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2

2

2
2
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2

2

2

2
2

cos sinh
r

h
− =    where ρ = (x2 + y2)1/2
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14  BESSEL FUNCTIONS
14.1  Defi nitions

 The functions that satisfy Bessel’s differential equation

 x2y'' + xy' + (x2 − n2)y = 0 Ext

are the Bessel functions of order n.

 The general solution of Bessel’s differential equation is

 y = c1Jn(x) + c2 J−n(x), n ≠ 0, 1, 2, …

 y = c1Jn(x) + c2Yn(x), for any n

 y = c1Hn
(1)(x) + c2Hn

(2)(x), for any n

 y c J x c J x dx
xJ xn n

n
= + ∫1 2 2( ) ( )

( )
 for any n

where c1 and c2 are arbitrary constants and Jn(x), Yn(x) are the Bessel functions of the 
fi rst and second kind, respectively.
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Fig. 14-1: Jn(x), Yn(x), n = 0 , n = 1 , n = 2 , n = 3 

14.2  Bessel Functions of the First Kind

 The Bessel functions of the fi rst kind and order n are defi ned by the relations

 

J x x
n

x
n

x
n n
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n
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n
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( )
( ) ( ) ( )( )

( ) ( /
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− + + ⋅ + + −{ }
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Values
 Tn(−x) = (−1)nTn(x)

 T2n(0) = (−1)n T2n+1(0) = 0 Tn(1) = 1 Tn(−1) = (−1)n

Expansion in series

 f (x) = !a0T0(x) + a1T1(x) + a2T2(x) + … Exa

a f x T x
x

dxk
k=

−−∫
2

1 21

1

p
( ) ( )

16.8  Chebyshev Polynomials of the Second Kind

Differential equation

 The polynomials Un(x) satisfy the differential equation

(1 − x2)y'' − 3xy' + n(n + 2)y = 0
Generating function

1
1 2
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Fig. 16-5

U0(x) = 1

U1(x) = 2x

U2(x) = 4x2 − 1

U3(x) = 8x3 − 4x

U4(x) = 16x4 − 12x2 + 1

U5(x) = 32x5 − 32x3 + 6x

U6(x) = 64x6 − 80x4 + 24x2 − 1
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U8(x) = 256x8 − 448x6 + 240x4 − 40x2 + 1
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!( )!( )= +( ) − +( ) − + = − −

−
−1

1
1

3
1 1 2 22 2 � nn k

k

n
n−

=
∑ ≥2

0

2
1

⎣ ⎦/
,

U x n
n x

d
dx

x xn

n n n

n
n( ) ( ) ( )!

( )!
( )= − +

+ −
− −⎡⎣ ⎤⎦

1 2 1
2 1 1

1 1
2

2 2      (Rodrigues’s formula)
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18.4  Tables of Fourier Transforms
 In each case, we give (a) the function f (t), (b) the corresponding Fourier transform 
F(ω) [or Fs(ω) or Fc(ω)], (c) the graph of f (t) in green, (d) the graph of Re{F(ω)} 
in red, and (e) the graph of Im{F(ω)} in purple. On the horizontal axis, the values of 
t and ω are given and on the vertical axis the values of f (t) and F(ω) are given. For 
some f (t) the integral f t dt( )−∞

∞
∫  does not exist, but the function F(ω) can be used 

in formal (not rigorous) calculations.
 Methods to prove the formulas: � Use delta function. � Use defi nite integral. 
� Use Fourier cosine integral. � Use complex integral. � Prove inverse.

 Fourier transforms  (  f (t),  Re{F(ω)},  Im{F(ω)}, −∞ < ω < ∞) Inf

 f (t) = 1    � 0.8

1
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  Fig. 18-1
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  Fig. 18-2
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19.3  Tables of Laplace Transforms
 Laplace transforms of some elementary functions Pro

f (t) F(s) f (t) F(s)

1 1 0s s, > sinat a
s a

s2 2 0
+

>,

t 1 02s
s, > cosat s

s a
s2 2 0

+
>,

t n,    n = 0, 1, … n
s

sn
! ,+ >1 0 sinhat a

s a
s a2 2−

>,

t a,     a > −1 G ( ) ,a
s

sa
+ >+

1 01
coshat s

s a
s a2 2−

>,

eat 1
s a s a− >, eatsinbt

b
s a b

s a
( )

,
− +

>2 2

t neat,   n = 0, 1, …
n

s a
s an

!
( )

,
−

>+1 eatcosbt
s a

s a b
s a−

− +
>

( )
,2 2

t beat,    b > −1 G ( )
( )

b
s a b

+
− +

1
1 U t

t a
t aa ( )

,
,

=
<
>

⎧
⎨
⎩

0
1

e
s s a
as−

> ≥, ,0 0

ln t − + >g ln ,s
s s 0 δ(t − a),    a ≥ 0

[delta function] e−as

Inverse Laplace transforms

F(s) f (t) F(s) f (t)

s−1 1 (s2 + a2)−1 a−1sinat

s−n,   n = 1, 2, … t n−1/(n − 1)! s(s2 + a2)−1 cosat

s−a,   a > 0 t a−1/Γ(a) (s2 − a2)−1 a−1sinhat

(s − a)−1 eat s(s2 − a2)−1 coshat

(s − a)−n,  n = 1, 2, … t n−1eat/(n − 1)! [(s − a)2 + b2]−1 b−1eatsinbt

(s − a)−b,   b > 0 t b−1eat/Γ(b) s[(s − a)2 + b2]−1 b−1eat(bcosbt + asinbt)
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21.3  Various Distributions

Normal distribution

 The continuous random variable X has the probability (i.e. density) function

 
f x x( ) exp ( )= − −⎡

⎣⎢
⎤
⎦⎥

1
2 2

2

2p s
m

s  

--6 --4 --2

0.1

0.2

0.3

0.4

0 2 4 6

f x( )

x

m s= 0, = 1
m s= 0, = 2

Fig. 21-1

for −∞ < x < ∞ and distribution function

 
F x u du

x
( ) exp ( )= − −⎡

⎣⎢
⎤
⎦⎥−∞∫1

2 2

2

2p s
m

s

Mean value μ, variance σ 2, skewness a3 = 0,
kurtosis a4 = 3, moment generating function M(t) = exp(μt + σ 2t 2/2),
characteristic function Φ(ω) = exp(iμω − σ 2ω2/2)

 Setting Z = (X − μ)/σ we obtain the standard normal distribution with probability 
function and distribution function respectively

 
f z e z( ) ,/= −1

2
2 2

p           
F z e du zu

z
( ) /= = + ( )⎡

⎣⎢
⎤
⎦⎥

−

−∞∫1
2

1
2 1

2
2 2

p
erf

 
Tab

Binomial distribution

 Let p be the probability for an event to happen (success) in performing a random 
experiment once (single trial) and q = 1 − p be the probability for the same event not 
to happen (failure). If we repeat the experiment n times, then the probability for this 
event to happen exactly x times (x = 0, 1, …, n) is given by the binomial distribution

f x P X x n
x

p q n
x n x p qx n x x n x( ) ( ) !
!( )!= = = ( ) = −

− −

 

0.1
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0.3

2 4 6 8 100

f x( )

x

p n= 0.4, = 6
p n= 0.6, = 10

Fig. 21-2

i.e. the coeffi cients of the binomial expansion

( )p q q n pq n p q pn n n n n+ = + ( ) + ( ) + +− −

1 2
1 2 2 �

Mean value μ = np, variance σ 2 = npq,

skewness a q p
npq3 = − , kurtosis a n pq

npq4
3 2 1= − +( )

moment generating function M(t) = (pe t + q)n, 
Extcharacteristic function Φ(ω) = ( pe iω + q)n.
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Alive Books®

An “Alive Book” is a book that is constantly growing and evolving in space 
and time. It consists of four parts: A, B, C, and D. Parts A and B are printed 
books, while parts C and D are in electronic form.
Part A is a regular size book in full color. It contains the full presentation of 
the complete subject. It also contains icons that represent links to additions 
in part C. The purpose of part A is to present the whole subject in a detailed and 
highly absorbable form.
Part B is a small book also printed in color. It contains a summary of the 
main points of the subject title. The purpose of part B is to present the subject 
in a concise form for review purposes or as a fast reference.
Part C contains additional fi xed material in electronic fi les. All of these 
additions are available to the user through the Internet upon their request. The 
purpose of part C is to provide more information to the user.
Part D contains material that is continuously changing, as well as links to 
related content on the Internet. Part D is made available to users through the 
Internet. The purpose of part D is to keep the whole book up to date.
Alive Books® are designed with one main objective: to facilitate learning. 
They cover the subject in a way that satisfi es the needs of students and profes-
sionals from elementary to advanced levels.

Mathematical Handbook
Mathematics is the basic tool for scientifi c analysis of everything in the real 
world. The aim of this book is to offer precise, reliable, highly organized, and 
easily accessible information about mathematical defi nitions, properties, for-
mulas, and methods for a wide range of topics.
More generally, this Mathematical Handbook is a portal of reference in 
mathematics. In the 340 pages of part A, this handbook covers algebra, trig-
onometry, geometry, calculus, series, Fourier series, vector analysis, special 
functions, Fourier and Laplace transforms, numerical analysis, probability and 
statistics, and other areas of mathematics. In part B, a summary is presented in 
80 pages, with an emphasis on basic material.
About 500 icons connect part A to part C, which is accessible through the Inter-
net. A total of more than 1000 pages of mathematical knowledge are available 
to the user. More extensions are given in part D. The whole book is designed 
to be a helpful lifetime companion for anyone who uses mathematics; a stu-
dent, a professional, or an occasional user. It is an expanding “Alive Book”.
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